- Visibility 362 Views
- Downloads 489 Downloads
- Permissions
- DOI 10.18231/j.idjsr.2025.013
-
CrossMark
- Citation
Artificial intelligence innovations revolutionizing dental implant success
Artificial intelligence (AI) represents the latest trend in dentistry, offering precise tools that can reshape the outcomes of our treatments. Considering the need to support and enhance the clinical decision-making process, this systematic review provides insights into the effectiveness and accuracy of various AI models. The aim is to evaluate the evidence on the effectiveness of various AI models for implant dentistry in diagnosis, treatment planning, prognosis, and implant system classification. In accordance with the PRISMA-DTA guidelines, a comprehensive search was conducted across multiple databases, including PubMed/Medline, Google Scholar, and Cochrane from the year 2016 to 2024. During the article screening and selection process, the PICO guidelines were followed. The methodological quality and bias of the study were assessed using the Critical Appraisal Skills Programme (CASP) 2023 checklist for systematic review and the CASP checklist for clinical prediction rule. It has been found that AI models are highly effective in detecting anatomical landmarks, improving surgical planning for implant positioning, predicting the outcome based on alveolar bone patterns around the implant, and providing accurate classification in detecting implant systems. For clinicians to achieve the greatest benefits for their patients, a broader knowledge of AI applications in implant dentistry and a deeper understanding of its insights are essential.
Keywords: Artificial intelligence, Artificial neural networks, Convolutional neural networks, Deep learning, Machine learning
References
- Lifschitz V. John McCarthy (1927–2011). Nature. 2011;480(7375):40.
- Xie B, Xu D, Zou XQ, Lu MJ, Peng XL, Wen XJ. Artificial intelligence in dentistry: a bibliometric analysis from 2000 to 2023. J Dent Sci. 2024;19(3):1722-33.
- Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology. 2017;73(1):7-21. 72 Khatoon et al. / International Dental Journal of Student's Research 2025;13(2):62-72
- Jivraj S, Chee W. Rationale for dental implants. Brit Dent J. 2006;200(12):661-5.
- Tang L, Lund JP, Tache R, Clokie CM, Feine JS. A within-subject comparison of mandibular long-bar and hybrid implant-supported prostheses: evaluation of masticatory function. J Dent Res. 1999;78(9):1544-53.
- Hartlev J, Kohberg P, Ahlmann S, Andersen NT, Schou S, Isidor F. Patient satisfaction and esthetic outcome after immediate placement and provisionalization of single‐tooth implants involving a definitive individual abutment. Clin Oral Imp Res . 2014;25(11):1245-50.
- Critical Appraisal Skills Programme (2023). CASP (Systematic Review) Checklist.https://casp-uk.net/casp-tools- checklists/systematic-review-checklist/
- Critical Appraisal Skills Programme (2023). CASP (Clinical Prediction Rule) Checklist. https://casp-uk.net/casp-tools- checklists/clinical-prediction-rule-checklist/
- Pjetursson BE, Asgeirsson AG, Zwahlen M, Sailer I. Improvements in implant dentistry over the last decade: comparison of survival and complication rates in older and newer publications. Int J Oral Maxillofac Imp. 2014;2;29.
- Moayeri RS, Khalili M, Nazari M. A hybrid method to predict success of dental implants. Int J Adv Comp Sci Appl. 2016;7(5):1-6.
- Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep. 2020;10(1):5842.
- Kurt Bayrakdar S, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, Shumilov E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imag. 2021;21(1):86.
- Roongruangsilp P, Khongkhunthian P. The learning curve of artificial intelligence for dental implant treatment planning: a descriptive study. Applied Sci. 2021;11(21):10159.
- Alsomali M, Alghamdi S, Alotaibi S, Alfadda S, Altwaijry N, Alturaiki I. Development of a deep learning model for automatic localization of radiographic markers of proposed dental implant site locations. Saudi Dent J. 2022;34(3):220-5.
- Park J, Lee J, Moon S, Lee K. Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images. Appl Sci. 2022;12(3):1595.
- Lyakhov PA, Dolgalev AA, Lyakhova UA, Muraev AA, Zolotayev KE, Semerikov DY. Neural network system for analyzing statistical factors of patients for predicting the survival of dental implants. Front Neuroinformatics. 2022;16:1067040.
- Kung PC, Hsu CW, Yang AC, Chen NY, Tsou NT. Prediction of bone healing around dental implants in various boundary conditions by deep learning network. Int J Mol Sci. 2023;24(3):1948.
- Zhang C, Fan L, Zhang S, Zhao J, Gu Y. Deep learning based dental implant failure prediction from periapical and panoramic films. Quant Imag Med Surg. 2023;13(2):935.
- Hwang IK, Kang SR, Yang S, Kim JM, Kim JE, Huh KH. SinusC- Net for automatic classification of surgical plans for maxillary sinus augmentation using a 3D distance-guided network. Sci Rep. 2023;13(1):11653.
- Moufti MA, Trabulsi N, Ghousheh M, Fattal T, Ashira A, Danishvar S. Developing an artificial intelligence solution to autosegment the edentulous mandibular bone for implant planning. Eur J Dent. 2023;17(04):1330-7.
- Yang X, Li X, Li X, Wu P, Shen L, Deng Y. Implantformer: vision transformer-based implant position regression using dental cbct data. Neural Comp Appl. 2024;36(12):6643-58.
- Coli P, Christiaens V, Sennerby L, Bruyn HD. Reliability of periodontal diagnostic tools for monitoring peri‐implant health and disease. Periodontology. 2017;73(1):203-17.
- Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res. 2017;96(1):31-7.
- Papantonopoulos G, Gogos C, Housos E, Bountis T, Loos BG. Prediction of individual implant bone levels and the existence of implant “phenotypes”. Clin Oral Imp Res. 2017;28(7):823-32.
- Liu CH, Lin CJ, Hu YH, You ZH. Predicting the failure of dental implants using supervised learning techniques. Appl Sci. 2018;8(5):698.
- Zhang H, Shan J, Zhang P, Chen X, Jiang H. Trabeculae microstructure parameters serve as effective predictors for marginal bone loss of dental implant in the mandible. Sci Rep. 2020;10(1):18437.
- Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS. Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs. J Clin Med. 2021;10(5):1009.
- Liu M, Wang S, Chen H, Liu Y. A pilot study of a deep learning approach to detect marginal bone loss around implants. Bmc Oral Health. 2022;22(1):11.
- Chen YC, Chen MY, Chen TY, Chan ML, Huang YY, Liu YL. Improving dental implant outcomes: CNN-based system accurately measures degree of peri-implantitis damage on periapical film. Bioengineering. 2023;10(6):640.
- What Implant Is That? Available from: https://whatimplantisthat.com
- Michelinakis G, Sharrock A, Barclay CW. Identification of dental implants through the use of Implant Recognition Software (IRS). Int Dent J. 2006;56(4):203-8.
- Kim JE, Nam NE, Shim JS, Jung YH, Cho BH, Hwang JJ. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med. 2020;9(4):1117.
- Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study. Medicine. 2020;99(26):e20787.
- Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y. Deep neural networks for dental implant system classification. Biomolecules. 2020 ;10(7):984.
- Takahashi T, Nozaki K, Gonda T, Mameno T, Wada M, Ikebe K. Identification of dental implants using deep learning—pilot study. Int J Imp Dent. 2020;6:1-6.
- Hadj Saïd M, Le Roux MK, Catherine JH, Lan R. Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph. Int J Oral Maxillofac Imp. 2020;35(6):1077-82.
- Lee DW, Kim SY, Jeong SN, Lee JH. Artificial intelligence in fractured dental implant detection and classification: evaluation using dataset from two dental hospitals. Diagnostics. 2021;11(2):233.
- Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: Towards robotics and artificial intelligence in dentistry. Dent Mat. 2020;36(6):765-78.
- Dibart S, Kernitsky-Barnatan J, Di Battista M, Montesani L. Robot assisted implant surgery: hype or hope?. J Stomatol, Oral Maxillofac Surg. 2023;124(6):101612.
- Li Z, Xie R, Bai S, Zhao Y. Implant placement with an autonomous dental implant robot: a clinical report. J Prosthetic Dent. 2023;133(2):340-5.
- Sun M, Yue C, Stuhr S, Fu X, Wang HL. Autonomous Dental Implant Robotic System Utilization for Implant Placement and Transcrestal Sinus Elevation Using Osseodensification: A Case Report. Int J Period Rest Dent. 2024;44(6):697-707.
- Li C, Wang M, Deng H, Li S, Fang X, Liang Y. Autonomous robotic surgery for zygomatic implant placement and immediately loaded implant-supported full-arch prosthesis: a preliminary research. Int J Imp Dent. 2023;9(1):12.
How to Cite This Article
Vancouver
Khatoon N, Singh P, Verma UP, Gupta A. Artificial intelligence innovations revolutionizing dental implant success [Internet]. Int Dent J Stud Res. 2025 [cited 2025 Oct 02];13(2):62-72. Available from: https://doi.org/10.18231/j.idjsr.2025.013
APA
Khatoon, N., Singh, P., Verma, U. P., Gupta, A. (2025). Artificial intelligence innovations revolutionizing dental implant success. Int Dent J Stud Res, 13(2), 62-72. https://doi.org/10.18231/j.idjsr.2025.013
MLA
Khatoon, Nazia, Singh, Pooja, Verma, Umesh Pratap, Gupta, Abhaya. "Artificial intelligence innovations revolutionizing dental implant success." Int Dent J Stud Res, vol. 13, no. 2, 2025, pp. 62-72. https://doi.org/10.18231/j.idjsr.2025.013
Chicago
Khatoon, N., Singh, P., Verma, U. P., Gupta, A.. "Artificial intelligence innovations revolutionizing dental implant success." Int Dent J Stud Res 13, no. 2 (2025): 62-72. https://doi.org/10.18231/j.idjsr.2025.013